The works of the French surgeon Maurice Bucaille on the subject of science, the Bible, and the Qur’ân have been widely acclaimed by the Muslim world, with translations into numerous languages. Much more recently, a number of Muslim philosophers of science have begun to take issue with the kind of approach to science and the Qur’ân that Bucaille’s writings exemplify. However, whether it is claimed by Bucaille and his supporters that his ideas are something new and extraordinary, or broadside attacks against “Bucaillism” by his critics, both tend to obscure the fact that the “scientific exegesis” of the Qur’ân has a long history in Islam. Amin al-Khuli, writing a generation ago, traces the origin of this kind of approach as far back as al-Ghazali (5th century A.H.), and in criticizing it, makes use of arguments nearly as venerable as that of Shataibi (8th century A.H.). The antiquity of the debate suggests that at least some of the stimulus for scientific exegetical treatments comes from sources internal to Islam, rather than from modern apologetic considerations. These sources might include certain Qur’anic passages and Hadith, the Islamic view of the unity of knowledge and the inherent rationality of true religion, and even the broad range of possible meanings of the Arabic word, ‘ilm.

Kurt A. Wood, 555, Ontario, Dr. Livermore, CA 94550 (USA).
However, the popularity of the scientific exegesis approach in our generation must surely be due to the tremendous scientific developments of the past century and the increased contact between the Muslim World and the West. Amin al-Khuli, in hindsight, was naïve to think that approaches to the Qur’ân based on scientific exegesis “seem to be no longer acceptable to educated people”⁹. If only because of the great impact of western science, technology, and values upon the Muslim World, it is not surprising that many Muslim authors have addressed the subject of science and the Qur’ân with new vigour. These authors make use both of traditional arguments and of more recent ideas, including many imported from the West. While the scientific exegetes have focused largely on recent scientific discoveries and their relation to the Qur’ân, their critics have likewise made use of recent trends in understanding the nature of science and its place in the larger context of human thought. Because the arguments of both sides have become increasingly sophisticated, this paper will attempt to clarify matters by carefully distinguishing a number of different theses which have been advanced by the proponents of scientific exegesis. These theses are then reviewed in the light of various objections which have been levelled against them by their critics.

Theses of the Scientific Exegetes

The works of the various scientific exegetes of the Qur’ân advance a number of theses, which often are not explicitly distinguished either by their advocates or by their critics. The following theses can be identified, though of course any given author will not necessarily adhere to all of them.

1. The Compatibility Thesis: The Qur’ân is not in contradiction with modern science.

This thesis is perhaps the simplest thing that can be said which affirms both the Qur’ân and science. It is advanced by essentially all Muslim writers on the subject, from scientific exegetes like Bucaille and Torki¹⁰ to critics of scientific exegesis
like al-Khuli and Sardar. The “compatibility thesis” is consistent with a number of possible approaches to Qur’anic exegesis:

- a compartmental approach which completely decouples “spiritual” and “scientific” kinds of knowledge, limiting the Qur’ân to the former;
- a phenomenological approach to the text which seeks to understand the Qur’anic texts referring to natural phenomena in the context of the common knowledge bank of the Arabs at the time of the Prophet;
- a scientific exegesis approach which seeks detailed scientific information in the Qur’anic text.

Because the compatibility thesis makes no reference to the amount of scientific information to be found in the Qur’ân, it is not really a thesis of full-fledged scientific exegesis—it does not go far enough. It is perhaps more helpful to consider the compatibility thesis as a working hypothesis, an a priori guiding principle, rather than as a demonstrable thesis. That is it is this conviction that there are no contradictions between true science and the Qur’ân (when correctly interpreted) which compels the believer, in the face of an apparent contradiction between the two, to resolve the dilemma by re-examining his understanding of science, his understanding of the scriptural passage in question, or both. Such a conviction that there can ultimately be no contradictions between these sources of knowledge is the natural outgrowth of an Islamic, or more generally any monotheistic worldview which sees both Revelation and Creation as twin works of the One God. As noted above, it is shared by many Muslims who nevertheless reject the approach of the scientific exegetes. For this reason the “compatibility thesis” is not really at issue here.

2. The Concordist Thesis: The Qur’ân makes scientific statements (in the 20th century sense of the term) which can be harmonized with scientific knowledge from other sources.
In its weakest form, the concordist thesis will be objectionable only to those who see the Qur’ân as providing information only about “spiritual”, i.e. non-material truths. Most Muslims, however, would presumably reject such a compartmentalization of the spiritual and material realms. They would generally seek to understand the large number of Qur’ânic references to natural phenomena according to their apparent meaning, as really referring to natural phenomena. Taking this latter principle for granted, the real issue is how far one may legitimately proceed in extracting scientific information from these passages. Some proponents of the “veiled reference thesis” discussed below see allusions to an enormous amount of modern science in the Qur’ân. Others are more reluctant to find 20th century ideas in the ancient text, yet use Qur’ânic teachings, for instance about cosmology or human origins, to supplement and correct scientific theories. Though both of these schools of thought hold implicitly or explicitly to what we designate the “concordist thesis,” it is the latter school which manifests a more thorough-going “concordism.”

A good example of the concordist approach is provided by the Moroccan paleontologist ElKbir Saaidi, who proposes a scenario of the origin of man and animals that fuses evolutionary theory and Qur’ânic data. In Saaidi’s synthesis, modern evolutionary theory is allowed a substantial autonomy up to the point where human origins are considered and there appears to be a conflict with Qur’ânic teachings. At this point Saaidi uses the Qur’ânic accounts of human origins to propose a parallel evolutionary development of the first human being on another planet, followed by a subsequent “fall” to earth.

Saaidi’s approach is moderate in the sense that it does not often try to read modern scientific content in the details of the Qur’ânic verses. Other scientific exegetes go substantially further in this respect, obtaining in the process a correspondingly greater “harmony” between the Qur’ân and science. For example the Tunisian physicist Bashir Torki sees in the Qur’ânic references to
the “seven earths” (*Al-Qur’an*; 65:12) a correspondence with the seven electronic shells of atoms, and the seven Bravais lattice types of crystals. In the more extreme cases, it is generally science which is informing the Qur’anic interpretation, rather than the Qur’an which is affecting the scientific picture; concord is achieved by making the verses fit science, rather than the other way around.

Also concordists have made various attempts to construct a scientific description of future events, i.e. the end of the world, from Qur’anic teachings. In the case of Mahmood, these descriptions can be quite detailed. For all these writers, a key assumption is that there is substantial scientific content, in the modern sense, in the Qur’an. By contrast, in a “phenomenological” approach to the same verses, as mentioned above, one would not expect the verses to be giving scientific information in the modern sense. Rather, the verses would be understood as referring to phenomena and experiences common to the original, “pre-scientific” recipients of the Qur’anic message.

A more extreme form of the concordist thesis holds that all of science is to be found in the Qur’an, at least implicitly. This thesis has obvious roots in the Qur’anic verse “Nothing have we omitted from the Book” (*Al-Qur’an*; 6:38), as well as in certain Hadith. It was perhaps easier to sustain such a thesis in the Middle Ages than it is in the 20th century; nevertheless, a number of modern writers come close, for instance Torki, the Egyptian writer Muhammad Jamaluddin El-Fandy, and the Pakistani Attaf Ahmad Khairi. A related thesis, which might be called the “sourcebook” thesis, holds that the scientific information in the Qur’an has historically been a major stimulus for scientific advance. Soliman advances this idea in his *Scientific Trends in the Qur’an*: “the Qur’an corrected the wrong theories then existing about the universe, and revealed new ones.” Others do not go quite so far, but do see the *shahada* as guiding and directing the theories of modern science, even in the West. These latter theses
really concern history more than exegesis. However, they fill the same kind of apologetic role in the Muslim community and reflect the same high view of science as the main theses of scientific exegesis, particularly the veiled reference thesis which we now discuss.

3. The Veiled Reference Theses: The Qur’ân contains verses which can only be fully understood by modern science.

If the concordist thesis can be considered as an attempt to let the Qur’ân inspire and correct modern scientific ideas, the veiled reference thesis is an attempt to let science shed light on the Qur’ân. Bucaille states this explicitly, and makes it one of his main theses: “Modern scientific knowledge therefore allows us to understand certain verses of the Qur’ân which, until now, it has been impossible to interpret.” According to Bucaille, among the subjects upon which the Qur’ân speaks in veiled language, which we can now understand fully for the first time, are human reproduction and embryology, the origin of life, the water cycle, the orbit of the sun and moon, protogalactic nebulae, space travel, and the physiology of digestion.

Other authors go further than Bucaille and see in certain Qur’ânic verses allusions to a whole range of modern discoveries and inventions. Among the more spectacular scientific or technological references found by some in the Qur’ân are the incandescent light bulb, the Sargasso Sea, the flattening of the earth at the poles, the atom bomb, the Hubble expansion of the universe, UFO’s, Einstein’s theory of Special Relativity, airplanes, X-rays, anti-matter, and black holes.

4. The Verification Theses: Modern science proves/verifies the divine origin of the Qur’ân.

This thesis, even when not made explicit, is the implied conclusion of the veiled reference thesis. It is the point which the scientific exegetes are ultimately trying to make for apologetic
reasons, whether their audience is inside or outside Dar-al-Islam. The conclusion to Bucaille’s first book brings this out.26

“In view of the state of knowledge in Muhammad’s day, it is inconceivable that many of the statements in the Qur’ân which are connected with science could have been the work of a man. It is moreover, perfectly legitimate, not only to regard the Qur’ân as the expression of a Revelation, but also to award it a very special place on account of the guarantee of authenticity it provides and the presence in it of scientific statements which, when studied today, appear as a challenge to human explanation”.

Likewise, El-Najjar argues that “the precedence of the Qur’ân, fourteen centuries ago, with scientific notions and facts that were only discovered a few years ago is, in itself, a clear proof that it is divine revelation.”27

In summary, the scientific exegesis of the Qur’ân marked by a move beyond the basic premise of the believer, which we have called the compatibility thesis, that there ultimately can be no contradiction between science and Scripture. In scientific exegesis the Qur’ân is assumed to provide a great deal of information relevant to 20th century science. This information can either be pulled out of the Qur’ân, using it as a supplementary scientific source (the concordist thesis), or verses can be interpreted in the light of modern scientific knowledge (the veiled reference thesis). Often the ultimate goal of these exercises is the verification thesis, namely that the Qur’ân’s divine origin is proved by its scientific accuracy and foreknowledge.

The Problems with These Approaches

The problems with the theses of the scientific exegetes can be grouped under several categories. Amin El-Khuli notes three lines of criticism already to be found in the writings of al-Shataibi (8th century A.H.): the linguistic problem, the literary problem, and the religious or dogmatic problem. To this can be added
problems resulting from the changing and tentative nature of science, the problem of authority, and the cultural problem involved with current attempts to graft western norms and ways of thinking wholesale into a Muslim apologetic.

The linguistic, or one might say semantic, problem centers around the fact that words change meaning with time. To understand the Qur’ân correctly, one is therefore obliged to inquire how its vocabulary was used in the Hejaz at the time of the Prophet and a classical Islamic “Science” in fact arose to do precisely that. As Yusuf Ali argues, “the early commentators and philologists went into these matters with a very comprehensive grasp, and we must not devise new verbal meanings.” Yet this is precisely what a number of scientific exegetes of the Qur’ân have done, in attempting to read modern scientific meanings into certain Qur’ânic words. In the case of Bucaille, this is done in spite of a very limited background in Arabic. His reinterpretations of Qur’ânic words come close to being “private interpretations” of the Qur’ân, which have traditionally been condemned.

The literary problem identified by al-Khuli is based on the doctrine of the “eloquence” of the Qur’ân—the idea that its words are perfectly conformed to the needs of the historical situations to which it seeks. Yet clearly at the time of the Prophet, the verses referring to natural phenomena were not understood in the sense of the scientific exegetes. The “eloquence” of the Qur’ân implies that one ought normally to follow the understandings of the Prophet and companions in determining what Qur’ânic verses mean. Such historical precedents must not be jettisoned without very compelling reasons.

The dogmatic or religious problem is closely related to the literary problem. It centers around the purpose of those Qur’ânic passages which refer to natural phenomena. Are they primarily designed to provide new information about the natural world? Or are they allusions rather to everyday phenomena which, as signs
from God, ought properly to lead to reflection about God and His attributes? Arguing for the latter option, al-Khuli observes that the Qur’an addresses itself to everyone, the uneducated as well as the learned. It has the character of “simplicity” (in Arabic, it is “ummi”); its message is understood to be plain to all who know Arabic. One ought therefore to expect its references to nature to be phenomenological rather than scientific in the modern sense, and understandable in terms of the common knowledge bank of the era, and the kinds of experiences common to persons of all places and ages.\(^{31}\) To contend that a major purpose of these texts is to speak to modern scientific questions, is to overemphasize the preoccupations and hang-ups of our own particular generation.

Bucaille tries to head off such criticism by suggesting that even if the scientific content of these verses was not apparent in past ages, the spiritual message was plain: the verses “were intelligible to men during all eras, but they could only unravel the apparent meaning which however satisfied them fully, since the men of former times perceived, from the ideas about the verses which they had, the essential intention of the Book: to instruct men about the omnipotence of God, the primary goal of every Holy Scripture.”\(^{32}\) However, it is not the spiritual impact of the verses, which is at issue here, rather the meaning of the references to physical phenomena. If the spiritual message of these verses has always been clear, this is only because their references to the physical world are understandable according to their plain sense. That is, the “apparent” meaning of the verses could readily be found without resorting to esoteric knowledge. If the Qur’anic verses mentioning human development, for instance, are understandable on the basis of what any pre-scientific people would know from the observations of miscarriages, animal pregnancies, and so forth, on what basis can one argue that there is a “real meaning” to be found in the text, based on scientific concepts, that is superior to this “apparent meaning”? This is “eisegesis”, reading into the text, rather than exegesis, expounding
it, the process of eisegesis is carried even further by some scientific exegetes, who see scientific descriptions even in patently symbolic passages (for example, the famous “lamp in a niche” passage *(Al-Qur’ān; 24:35)* being seen as an illusion to a incandescent light bulb)\(^3\). As Sardar notes, “trying to read science in the allegorical, metaphorical and symbolic verses of the Qur’ān often stretches analogical reasoning beyond its limits and leads to absurd and in some authors, to quite contradictory conclusions than intended by the Qur’ān”\(^3\).

Another problem with scientific exegesis is that it overemphasizes the permanence of scientific knowledge. Thus Sardar complains that “Bučailism sacrifices the eternal validity of the Qur’ān at the altar of a partial and evolving understanding of reality produced by modern science.”\(^3\) He notes elsewhere, “what if a particular theory, which is “confirmed” by the Qur’ān, is in vogue today but abandoned tomorrow for another theory that presents an opposite picture? Does that mean that the Qur’ān is valid today but will not be valid tomorrow?”\(^3\) This criticism is applicable both to concordist harmonizations of the Qur’ān with current science, and to attempts to read veiled references to modern scientific theories in certain verses.

In this spirit, many participants at the First World Conference on Muslim Education “recommended that scientific fact that may alter with the passage of time should be separated from theory and assumption and that Muslim scientists should abstain from interpreting the Qur’ān through theory and assumption.”\(^3\) This recommendation has the merit of underlining that the Qur’ānic interpretations of the scientific exegetes are just as speculative as the elaborate constructions found in some of the sciences (for instance, paleontology) regardless of the ability of their respective proponents to recognize the fact. But it fails to address the question whether there exists some body of scientific truth which will never alter with time. Bučaille would claim, for instance, that he uses only those “iron-clad results of modern science”. Besides,
the fact discussed below that there is a cultural determinant affecting any science, a simple glance at the history of western science should be enough to convince anyone that the iron-clad ideas of one generation are perfectly capable of being jettisoned on the scrap heap of ideas by the next.

The above criticisms are concerned with the details of the scientific exegesis of the Qur'ân, that is, with the validity of the approach in specific situations. They apply to particular concordist attempt to harmonize science with particular verses, and to attempt to read modern scientific discoveries into particular verses. The other criticisms are more general, taking issue on philosophical and presuppositional grounds with the soundness of the whole scientific exegesis approach. These criticisms apply especially to the “verification thesis” (i.e. science proves the Qur'ân), the demonstration of which motivates much of the scientific exegesis. They identify two specific problems with scientific exegesis: an authority or verification problem, and a cultural problem.

The authority problem is based on the premise that the verification thesis is incompatible with the standard Muslim doctrine of the Qur'ân. This is because in using modern science to prove, in some sense, the validity of the Qur'ân is being judged according to scientific norms, rather than sitting as judge over those norms. To make matters worse, the norms by which the Qur'ân is judged are the fruit of a non-Islamic western secularist mentality.

The rationalistic assumptions underlying most modern scientific exegesis are brought out explicitly in Bucaille’s writings—perhaps because he writes as a Westerner, the product of a secularized (albeit partly Jesuit) educational system. Bucaille insists upon approaching the Qur’ân with only “well-established knowledge, logical deduction and reason” as guides, claiming that “corroboration between the scriptures and science is a necessary element to the authenticity of the sacred text.” If there
appears to be a discrepancy between science and scripture, he claims the solution is to be found “in not considering a passage containing unacceptable scientific data to be genuine.” Bucaille does not, in the final analysis, apply this principle to the Qur’ân in the way that he does to the Bible. In fact, he goes to considerable lengths to find solutions to apparent discrepancies between science and the Qur’ân, while dismissing or attacking attempts to do so with the Bible. Yet he is consistent throughout in giving priority to the authority of science, whether it be in attacking the Bible or conforming the Qur’ân.

Sardar provides a trenchant critique of this approach: “The Qur’ân, which is a book of guidance, does not need conformation from any other source. For Muslims, it is a priori valid and eternal. Any attempt at reading science in the Qur’ân makes the eternal scripture subservient to science: and elevates science to the level where it becomes the arbitrator of what is and what is not Truth.”

In actual fact scientific discoveries, in the writings of the scientific exegetes, only serve to confirm the Qur’ân and never to negate it. This shows that, on the detailed level of particular passages, their approach is actually governed by the article of faith we have called the “compatibility thesis” (there is no contradiction), or by concordist presuppositions (i.e. the Qur’ân has science in it), rather than by using scientific findings as authoritative in the sense proposed by Bucaille in the above quotes. Yet as soon as these writers moved beyond the particular harmonizations to discuss their larger significance, the authority of science is invoked, explicitly or indirectly, to give its blessing to the Qur’ân. While this surely mirrors how many Muslims must feel about the overwhelming impact and pull that modern technology has upon their lives, relatively few seem to have questioned the appropriateness of such an intellectual submission to science.

The authority problem is, in a sense, a manifestation of the larger cultural problem. Any attempt to relate in a significant way
western science and Islam is fraught with difficulties, because they embody very different world views. Among Muslims thinkers, Seyyed Hossein Nasr is notable as one who has addressed various facets of this issue for over twenty years. He identifies a semantic problem in discussing “science” and Islam:

“The term ‘science’ as used in the English language obviously cannot be translated into an ‘Arabic or Persian term bearing the same meaning. In fact the English word ‘science’ is not even synonymous with the French science and is even more removed in the scope of its meaning from the German wissenschaft. One cannot therefore translate the English word ‘science’ into ‘Arabic as al-’ilm and then proceed to discuss the relation between Islam and al-’ilm as has so often been the case in the kind of modernistic Muslim apologetic writings which would go to any extreme to placate modernism and would pay any price to show that Islam is ‘modern’ after all and that in contrast to Christianity it is not at all in conflict with ‘science’. Many modern Muslim apologists have insisted that Islam has always been in harmony with science and has in fact aided its advancement. What they really have in mind, however, is al-’ilm in general or at best the traditional sciences rather than modern science.”

It is immaterial whether the “modernists” with whom Nasr takes exception are scientific exegetes like Bucaille, or more secularized, liberal Muslims. In either case there is a deep rooted, uncritical adulation of western science meriting Nasr’s criticisms. This fact is ironic given that the intent of the scientific exegetes is to promote orthodox or resurgent Islam.

For Nasr, the semantic differences between the ‘Arabic al-’ilm and the English “science” only underscore the fundamental differences in world view between Islam and 20th century western civilization. Because the ultimate values and authorities of the two systems are so different, attempting a straightforward fusion of western science and Islam can only do violence to the latter:

“Faced with the challenge of the modern sciences which are the fruit of a totally different conception of the world, the Muslims
must bring into light the Islamic conception of the cosmos if they are to avoid the dangerous dichotomy which results from a superficial ‘harmony’ between the Islamic perspective and the modern sciences to be seen so often in the writings of modern Muslim apologists. If the modern sciences are going to be anything other than an artificial “tail” grafted upon the body of Islam or even an alien element, the ingestion of which may endanger the very life of the Islamic world, the Muslims must find the universal Islamic criteria in the light of which the validity of all the sciences must be judged.”

The point, for our purposes, is that the scientific exegetes have used western rather than Islamic criteria in extolling science as a means of proving the Qur’ân; in a sense they are attempting to build an Islamic edifice upon a western foundation.

In summary, then, the writings of the scientific exegetes of the Qur’ân suffer from serious weaknesses, both on the level of their detailed exegesis of the text where they invent fanciful and speculative new interpretations contrary to the established Islamic principles of how to correctly interpret the Qur’anic text, and on the level of argumentation where they attempt to prove the Qur’ân according to standards borrowed from the West-standards which are ultimately incompatible with the Islam they are trying to uphold. The chief question, which remains, is how long the apologetic and psychological needs of Muslims will compel them to continue in their fascination with scientific exegesis, and continue to uphold its practitioners as “renowned exegetes”47 and heroes.

REFERENCES

7. Ref. 6 mentions several in passing, most notably, “Nothing have we omitted from the Book” (*Al-Qur’ân;* 6:38), which is often juxtaposed with verses such as, “We have sent down to thee the Book explaining all things” (*Al-Qur’ân;* 16:89). All Qur’ânic translations are from A. Yusuf Ali, *The Holy Qur’ân, Translation and Commentary* (United States: American Trust Publications, 1977).

8. Ziauddin Sardar notes that the word ‘ilm has more than 1,200 definitions (*The Touch of Midas*) (Manchester: Manchester University Press, 1984), p.7). Compare the remarks of Seyyed Hossein Nasr, quoted at the end of this article, on the kind of semantic confusion possible when translating words like “science” and “‘ilm” from one language to another.

19. Bashir Torki, ref. 10, pp. 18-22. This goes beyond simply saying that the Qur’ân encourages the investigation of nature. Rather, it is the scientific teaching inherent in the shahada which is directing modern scientific theories. Cf. also Zaghloul El-Najjar, “The Limitations of Science and the Teachings of Science from the Islamic Perspective”, *Am. J. Islamic Social Sciences*, 3(1), 59(1986), who argues (p.67) that Qur’ânic verses “could be landmarks for future discoveries” in science.

22. Bashir Torki, *op. cit*.

29. For example his definition of *alaqa*, (Ref. 1, p. 212, 217–218), and his discussion of the origin of milk (Ref. 1, p. 209–210).

30. Another non-Arab, Safdar Jung Rajpoor, *op. cit.*, p. 68) likewise notes he was able to “put greater meanings” to Qur’ânic verses touching on cosmology “by choosing those meanings of the Arabic words which are more appropriate in the context of the present day scientific knowledge.

31. Even the scientific exegetes Soliman seems to agree (*op. cit.*, p. 14): “The scientific style of the Qur’ân is clear and to the point. It is precise and concise. Its verses dealing with science need very little explanation. When we read them, they immediately convey their meaning. There is no symbolism or ambiguity.”

33. This point is tacitly admitted by Keith Moore when he says he is providing “personal interpretations (of the Qur’ânic verses) based on (his) knowledge of embryological history and of the modern science of human embryology”, *op. cit.*, (*Africa Events*, May 1985), p. 16.

34. Malek Bennabi, *op. cit.*

40. Maurice Bucaille, Ref. 1, p. 17.
41. Maurice Bucaille, Ref. 1, p. 17.
42. To give only one example from ref. I (pp. 140–142), he suggests (on reasonable semantic grounds, based on usage elsewhere in the Qur’ân) that the Arabic word “yawm” day, in Qur’ânic references to the creation of the world may refer to an indefinite period of time, but rejects the idea that the Hebrew word “yom”, day, may take a similar meaning in the Bible, despite similar evidence. While Bucaille often invokes metaphorical language or ignorance to deal with problematic Qur’ânic passages, attempts to understand the Bible in a similar fashion are branded as “cunning dialectical acrobatics orchestrated by apologetic lyricism” (Ref. 1, p. 268). The ad hominem nature of such attacks suggests that he has little substantive reason to oppose them.

Bucaille does, however, use scientific criteria to dismiss as not genuine a number of Bukhari’s Hadith. Since the Hadith presumably include some which are classified by Bukhari, based on the standard well-developed criteria, as “sound”, Bucaille’s rejection of them indirectly casts doubts on the reliability of all the Hadith. Here his approach is similar to that taken towards the Bible.

44. This is illustrated by Rajpoot’s refreshingly frank testimony (op. cit., p. 68) in his scientific exegesis “the result was not smooth always. There had been stumbling blocks and if the author had not deep rooted scientific conviction about the Divine Origin of the Book ….the effort would have been given up as an irreconcilable job.”
47. The title given to Maurice Bucaille in a byline in the Islamic Press Agency’s magazine Arabia (London), (32), 77 (April 1984).