Empathy and Rorschach Response Pattern of Epileptic Patients

Seema Rani Sarraf (Gupta), Poonam Singh and Archana Dhankar

ABSTRACT

Epilepsy is a brain disorder in which cluster of nerve cells, or neurons, in the brain sometimes signal abnormally. Neurons normally generate electrochemical impulses on other neurons, glands and muscles to produce human thoughts, feelings and actions. In epilepsy, the normal pattern of neuronal activity becomes disturbed, causing strange sensation, emotions and behavior, or sometimes convulsions, muscles spasms and loss of consciousness known as epileptic seizures. Emotions are distinct feelings or qualities of consciousness that reflects the personal significance of emotions arousing events. Psychologists have classified emotions in many different ways: one characteristic of all the classification is whether an emotion is positive or negative. Empathy can be put in the category of positive or negative emotion. Empathy means reacting to others feeling with an emotional response that is similar to the others feeling. There have been attempt to study personality in epileptic patients. The empathy level of epileptic patients is yet to be explored. The present study is an attempt to explore the empathy and Rorschach response pattern of epileptic patients. Rorschach Ink Blot Test and Rorschach Empathy Object Relationship Scale were used to test empathy. The samples were collected involving male epileptic patients and normal males of age range from 20-50 years. The epileptics were taken from Mental Hospital, Bareilly, Uttar Pradesh. Epileptics showed rigidity in perception, high somatic concerns and cold emotions and lower empathy levels than normal individuals.

Introduction

Empathy is a term coined in the early 20th century from Greek empatheia (em means in and pathos means feelings). Empathy is an essential part of emotions and is itself a specific emotion involving a feeling element of familiarity or connection and a bodily reaction of verbal or non-verbal communication. Empathy in general would mean feeling what the other person is feeling and being in

Seema Rani Sarraf: Guest Lecturer, Department of Applied and Clinical Psychology, M.J.P. Rohilkhand University, Bareilly.

Poonam Singh: Guest Lecturer, Department of Applied and Clinical Psychology, M.J.P. Rohilkhand University, Bareilly.

Archana Dhankar: PG student in Psychology, M.J.P. Rohilkhand University, Bareilly.
the shoes of the other. Psychologists have classified emotions in many different ways; one characteristic of most all classifications is whether an emotion is positive or negative. Empathy can be put in the category of positive emotions. Empathy is the capacity to share the sadness or happiness of another sentient being through consciousness rather than physically. Empathy develops the ability to have compassion towards other beings.

APA defines empathy as insightful awareness including the meaning and significance of the feelings, emotions and behaviours of another person contrast with sympathy.

In Britannica - 4, empathy is defined as the ability to imagine oneself in another’s place and understand the other’s feelings, desires, ideas and actions.

Buie (1981) has delineated four categories of empathy or empathic experience: Conceptual empathy, self-experimental empathy, imaginative empathy and resonant empathy. Empathy has roots early in development. A newborn baby cries in response to the cry of another baby, a reaction that may be primitive beginning of an empathic response. As self-awareness develops, one year old shows empathy for the first time. Researcher Martin Hoffman (1993) has observed four stages of empathy development: distress reaction, person performance stage, role-taking stage and stage of comprehensive empathy.

Epilepsy is a brain disorder in which clusters of nerve cells, or neurons, in the brain sometimes signal abnormally. In epilepsy, the normal pattern of neuronal activity become disturbed, causing strange sensations, emotions, and behaviour or sometimes convulsions, muscle spasms, and loss of consciousness. Epilepsy is a disorder with many possible causes. Anything that disturbs the normal pattern of neuron activity — from illness to brain damage to abnormal brain development — can lead to seizures. Epilepsy may develop because of an abnormality in brain wiring, an imbalance of nerve signaling chemicals called neurotransmitters, or some combination of these factors.

Causes of Epilepsy

Approximately 50% of the people who have been diagnosed with this disorder have an identifiable cause that contributed to its development. In the other 50%, doctors have not been able to identify a cause. When there is a cause that can be found, it falls into one of the following categories. These are head trauma and dementia especially among older adults. However, some types of epilepsy run in families, and researchers have linked epilepsy to specific genes. It is believed, however, that genetic factors are only a part of the overall cause; medical disorders – heart attack or stroke can result in damage to the brain, which can cause epilepsy to develop diseases such as AIDS, viral encephalitis, meningitis, and prenatal injury if fetuses suffer brain damage while their mothers are pregnant because of an infection or other reason; oxygen deficiency may develop in children cerebral palsy, and developmental disorders such as Down syndrome and autism.

Epilepsy has significant effects on the behaviour of most people who have it. In some cases the seizure activity itself is manifested as a brief change or interruption in behaviour that might appear unusual to the casual observer. Evidence also suggests that epilepsy can affect behaviour when seizures are not occurring (Barr, 2003). Patients with anterior cingulate seizure foci can develop interictal psychosis, aggression, sociopathic behaviour, sexual deviancy, irritability, obsessive-compulsive disorder, and poor impulse control (Devinsky et al. 1995). Waxman & Geschwind (1975) felt that a
number of specific personality characteristics were frequently seen in patients with temporal lobe epilepsy and that they were characteristic of such patients. These traits included deepened emotions, circumstantial thought (overly detailed, with delay in getting to the point), increasing concern with philosophical or religious beliefs, and a change in sexual behaviour. Hermann et al. (1975) demonstrated diffuse cognitive impairment (in intelligence, academic achievement, language, and visuospatial function. Some studies have confirmed greater cognitive impairments (as assessed by IQ testing) in patients with generalised (especially secondarily generalised) versus partial seizures (Matthews et al. 1967 and Smith et al. 1986). Severity of epilepsy is associated with decreased psychosocial well-being and increased psychopathology (Westbrook, 1992).

Hypotheses

1. The empathy level of epileptic group will be less than that of normal group.
2. There will be difference in the response pattern between both groups.

METHOD

Participants

The samples were collected involving 20 male epileptic patients and 20 normal males of age range from 20-50 years. The epileptics were taken from Mental Hospital, Bareilly, Uttar Pradesh.

Tools

1. **Rorschach Inkblot Test (RIBT):** RIBT was used to test the personality structure as well as to measure the empathy level. Lerner’s system of analysing Rorschach was used to analyse the response pattern of the epileptic and normal group on location, determinants, form level and content.

2. **Rorschach Empathy - Object Relationship scale (RE-OR scale):** RE-OR scale developed by Walter A. Pruitt & Bernard Spilka (1964) was used to test the empathy level of subjects. In RE-OR scale, there are eighteen types of scorables responses related to human content, human like content and movement responses with their weightage.

Procedure

Researcher contacted all the subjects individually. After establishing good rapport Rorschach inkblot test was administered personally to test the response pattern as well as empathy level.

Rorschach Inkblot Test: The seating arrangement was face-to-face. RIBT was administered in three phases.

First phase: After establishing rapport with the subject a brief case history from the records, as well as brief interview of the subject regarding

Second phase: Subjects were asked ‘Tell me please what you see? What might this be?’ In the case of rejection the subject was to be encouraged to try for about two minutes.

Third phase: The test was administered in this phase. Inquiry was done after each card. Recording of the responses was verbatim. The approach of the subject towards the RIBT, facial expression, rejection of the cards, and reaction time was noted carefully. The data was obtained from all the twenty subjects in similar fashion.
Rorschach Empathy-Object Relationship scale: After the scoring and interpreting the responses of RIBT human content, human like content and movement responses were found out. The researcher put these responses on the scale as it was given and gave the weightage. After adding the weightage score, the interpretation was made.

RESULTS AND DISCUSSION

In Lerner’s system all responses were coded, scored and checked for location, determinants, form level and content. The qualitative analysis of the protocols of epileptic subjects and normal subjects are presented in Table 1.

Table 1: Analysis of the protocols of epileptic subjects (ES) and normal subjects (NS) for response pattern on RIBT

<table>
<thead>
<tr>
<th>Location</th>
<th>Determinants</th>
<th>Form Level</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>ES</td>
<td>NP</td>
<td>Code</td>
</tr>
<tr>
<td>W</td>
<td>11.8</td>
<td>25.7</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>72.8</td>
<td>66.6</td>
<td>M</td>
</tr>
<tr>
<td>Dd</td>
<td>6.12</td>
<td>4.4</td>
<td>C</td>
</tr>
<tr>
<td>Dr</td>
<td>5.72</td>
<td>.55</td>
<td>FM</td>
</tr>
<tr>
<td>S</td>
<td>Nil</td>
<td>2.4</td>
<td>FC</td>
</tr>
<tr>
<td>De</td>
<td>2.56</td>
<td>Nil</td>
<td>CF</td>
</tr>
<tr>
<td>FCh</td>
<td>.98</td>
<td>2.0</td>
<td>Anat.</td>
</tr>
<tr>
<td>FC’</td>
<td>.98</td>
<td>Nil</td>
<td>Arc.</td>
</tr>
<tr>
<td>Cl</td>
<td>1.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Obj.</td>
<td>4.9</td>
<td>17.9</td>
<td></td>
</tr>
</tbody>
</table>

On the location dimension (Table 1) much difference was found between the response of epileptic and normal subjects. It was found that normal subjects give better responses on this dimensions’ code. The code W shows arbitrary generalisation in thinking of epileptic group (11.8%) while the normal group (25.7) showed abstract thinking. Code D indicates towards the awareness of obvious, interest and representativeness of normal group which epileptics’ lack. On other code frequency of Dd, Dr, and De was found which indicate the critical, compulsive and escaping behaviour of epileptic group. There was also anxiety, fragmentary perceptual organisation and lack of abstract thinking in them. Normal group showed a bit of oppositional tendency by code S.

On the determinant dimension (Table 1), code F epileptic group was found more concrete and rigid while normal group had hold on environmental aspect with maturity. There was a significant difference on code M and FM which reflects the empathy and inner potential of normal group. Colour responses define that normal group was more emotional, having feeling of pleasure and displeasure and sensitivity of effect in comparison to epileptic group.

Form level (Table 1) was also investigated in both groups in which important deviation was found. Normal group had superficial level of reality testing while epileptic lack this ability. But both group exhibits the tendency of moving away from reality and creating fantasy.
Empathy and Rorschach Response Pattern of Epileptic Patients

The content pattern (Table 1) tells that normal group had empathy and they are more social and share good interpersonal relationship than the epileptic group (H). But the A response revealed immaturity and stereotype behaviour in both group. Frequent Ad tells the critical tendency of epileptic group. The normal group had more compulsive adjustment than epileptic group (obj.). If we see the table there is a slight difference on the code Geo, Anat., and Cl. Dependency is one of the most common psychological characteristics of patients with epilepsy. Epilepsy is a disabling disorder that induces a sense of decreased control and self-efficacy, social difficulties, a perception of being stigmatized and low self-esteem (Bear et al 1977, 1982).

Table 2: Score of epileptic subjects (ES) and normal subjects (NS) on RE-OR Scale

<table>
<thead>
<tr>
<th>Response</th>
<th>Epileptic Subjects</th>
<th>Normal Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weightage</td>
<td>340</td>
<td>1136</td>
</tr>
<tr>
<td>Percentage of responses</td>
<td>34(6.71%)</td>
<td>111 (20.37%)</td>
</tr>
</tbody>
</table>

The scores obtained by the epileptic and normal group on RE-OR scale are presented in Table 2. Epileptic group scored low which was 6.71% (Table 2) while normal group got 20.37% on empathy scale.

The score revealed that epileptic group lacked empathy and they were aloof and detached from their environment. They had inner fragility and turmoil. Normal group had empathic relationship as they scored high on RE-OR scale. Movement responses reflect individual’s basic orientation and attitude towards themselves, others and the world around them. It represents the capacities to reach out into the environment in a variety of ways. The high score on RE-OR scale reflected the presence of interest in other human beings. They had warm and firm interpersonal relationship which was also confirmed by the colour response.

REFERENCES

